Regular Expression

Operators '*' repeat (unary) '|' or (binary) '' concat (binary) Example: ((a|b)*)(cd)

Regular Expression Matching

Regular Expression

- pattern for searching in data
- pattern ⇔ regular language
- can be detected by an finite automata
- can be deterministic or nondeterministic

NFA

Simulation on CPU

Create NFA from grammar Translate NFA into DFA Simulate DFA

O(n) O(2^n) O(1) per char

Simulation on CPU

Create NFA from grammar Simulate NFA

O(n) O(n) per char

Simulation on FPGA

Create NFA from grammar Translate NFA into wiring Simulate NFA

O(n) O(n) O(1) per char

Drop of Complexity

- completely parallelized
- Iinear in energy
- still minimal

	k	NFA	Construction	Time per text
o)(a b) b)		area	time	character
	8	$10 \times 7 \text{ CLBs}$	$21 \mathrm{ms}$	$10.70 \mathrm{~ns}$
	9	$11 \times 8 \text{ CLBs}$	$39 \mathrm{ms}$	$11.68 \mathrm{\ ns}$
	10	$12 \times 8 \text{ CLBs}$	$32 \mathrm{\ ms}$	11.99 ns
	11	$13 \times 9 \text{ CLBs}$	$34 \mathrm{ms}$	$12.17 \mathrm{~ns}$
	12	$14 \times 9 \text{ CLBs}$	$31 \mathrm{ms}$	$12.69 \mathrm{~ns}$
	13	$15 \times 10 \text{ CLBs}$	$29 \mathrm{ms}$	$12.32 \mathrm{\ ns}$
	14	$16 \times 10 \text{ CLBs}$	$33~\mathrm{ms}$	$12.70 \mathrm{\ ns}$
	15	$17 \times 11 \text{ CLBs}$	$34 \mathrm{ms}$	11.89 ns
	16	$18 \times 11 \text{ CLBs}$	$34 \mathrm{ms}$	$12.55 \mathrm{~ns}$
	17	$19 \times 12 \text{ CLBs}$	$37~\mathrm{ms}$	$13.06 \mathrm{\ ns}$
	18	$20 \times 12 \text{ CLBs}$	$37 \mathrm{\ ms}$	$13.24 \mathrm{\ ns}$
	19	$21 \times 13 \text{ CLBs}$	$31 \mathrm{ms}$	14.98 ns
	28	$30 \times 16 \text{ CLBs}$	39 ms	17.42 ns

Table 5: NFA area, NFA construction time and time per text character for the FPGA implementation.

(a|b)*a(a|b)(a|b)...(a|b k times (a|b)

k	T ext file	CPU	Maximum	Time per
	size (bytes)	time	memory	character
8	2560	0.00 s	580 KB	_
9	5632	0.00 s	580 KB	_
10	12288	0.00 s	580 KB	_
11	26624	0.00 s	580 KB	—
12	57344	0.00 s	580 KB	—
13	122880	$0.005 \mathrm{\ s}$	580 KB	_
14	262144	0.01 s	580 KB	_
15	557056	0.03 s	580 KB	53.86 ns
16	1179648	0.04 s	580 KB	$33.91 \mathrm{~ns}$
17	2490368	0.08 s	580 KB	32.12 ns
18	5242880	0.17 s	580 KB	32.42 ns
19	11010048	0.34 s	580 KB	30.88

T able 2: Results for text search and minimal DFA construction (best case).

Dense Linear Algebra

- fix point/floating point
- math operations in a pipeline
- reduce pipeline
- performance

fix point/floating point

fix point
almost like int
operations are simple

floating point

- complex
 behavior
- exponent
- denormalized numbers
- NaN, inf

math operations in a pipeline

take α cycles for a result
accept input each cycle

reduce tree

Average Time per Gaxpy Iteration

y = Ax + y 25

Average Number of Iterations per Joule

y = Ax + y 26

Iterations/Joule

Single Precision Floating-Point Performance / Watt

GFLOPs / Watt

Summary

very scalable many useful applications might become a default component of personal computers

Image Sources

- High-Performance Reduction Circuits Using Deeply Pipelined Operators on FPGAs
- BLAS Comparison on FPGA, CPU and GPU
- Fast Regular Expression Matching using FPGAs